

Compound QV75

Fluorocarbon (FPM, FKM, VITON¹) Material Description

Fluorocarbon is a well-known high-performance rubber that has excellent resistance to high temperature, ozone, weather, oxygen, mineral oil, fuels, hydraulic fluids, aromatics and many organic solvents and chemicals.

Fluorine Content

Viton® variations include: general type (A: 66% fluorine), middle fluorine content type (B, GBL: 67 to 68.5% fluorine), high fluorine content type (F, GF: 70% fluorine), improving low temperature flexibility type (GLT, GFLT) and excellent resistance to more chemicals and solvents (Viton® ETP Extreme). We also can supply excellent acid and alkali resistance parts made by VITON® TBR.

Cure system: Bisphenol-cured

Standard FKM compounds are Bisphenol-cured. FKM compounds with peroxide-cured possess better acid solution resistance than the bisphenol-cured and can replace litharge-cured applied in acid solutions. In some lubricants, adding a few organic amide or amine, or choosing peroxide-cured system Viton® will be better than bisphenol curing systems.

Other Common Variations

- FKM can also be submitted for approval to Underwriters Laboratories (UL) for use in applications as prescribed in UL157.
- FKM has excellent resistance to high temperature, oil, solvent, flame, chemical and weather, and is usually applied in automotive, chemical processing, aerospace and many other industries.
- Viton® GLT is broadly used in thermal range of -40°C to 250°C (-40°F to 482°F) and has outstanding resistance to aggressive HTS-type oils which are commonly used in aerospace industries.
- Viton® ETP is usually applied in chemical industries.
- In some fuels, adding several methanols, Viton® F and B-type are more usable than A-type, especially F-type. If it requires lower temperature, GFLT and GBLT will be available.
- Viton® TBR 605C (TFE/propylene polymer) is better base and steam resistant than other general Viton®. It can be used in amine, amide and some bases.

GENERAL INFORMATION				
ASTM D1418	FKM			
Designation	FKIVI			
ISO/DIN 1629	FKM			
Designation				
ASTM D2000/	НК			
SAE J 200 Codes	пк			
Standard	Black			
Colors				
Hardness	50 to 90			
Range	Shore A			
Relative Cost	High			
	10.			

SERVICE TEMPERATURES				
Standard Low	-26°C			
Temperature	(-15°F)			
Standard High	232°C			
Temperature	(450°F)			
Special Compound	-40°C			
Low Temperature	(-40°F)			
Special Compound	275°C			
High Temperature	(525°F)			

PERFORMS WELL IN:

- Petroleum products
- Fuel or blend with methanol or ethanol
- Diesel or blend with biodiesel
- Mineral oil and grease
- Silicone oil and grease
- High vacuum
- Ozone, weather and very high temperature air
- Strong acid

DOESN'T PERFORM WELL IN:

- Ketones
- Low molecular weight organic acids (formic and acetic acids)
- Superheat steam
- Low molecular weight esters and ethers
- Phosphate ester based hydraulic fluids-Skydrol®

¹ Viton is a registered trademark of Dupont Dow Elastomers.

TEST REPORT FOR COMPOUND QV75

MATERIAL: FLUOROCARBON RUBBER

DUROMETER: 75
COLOR: BLACK

ASTM* D2000 M2HK810 A1-10 B38 EF31 EO78 EO88 Z1

SECTION OF SPEC.	PROPERTIES	REQUIREMENTS	RESULTS	ASTM TEST	
	ORIGINAL PHYSICAL PROPERTIES				
	Hardness, Shore A	70±5	75	D2240-05	
	Tensile Strength, psi (MPa)	1450 (min.)	1937 (13.36)	D412-06a	
	Elongation, percent	150 (min.)	201	D412-06a	
	Modulus at 100%, psi (MPa)		965 (6.6)	D412-06a	
	Density (g/cm³)		1.99		
	HEAT AGE				
	70 hours at 250°C (482°F)				
A1 10	Hardness Change, points	+10 (max.)	+1	D573-04	
A1-10	Tensile Strength Change, percent	-25 (max.)	-10		
	Elongation Change, percent	-25 (max.)	+5		
	Weight Change, percent		-1.7		
B38	COMPRESSION SET			D395-03,	
	22 hours at 200°C (392°F), percent	50 (plied) (max.)	24.5	Method B	
	FUEL C RESISTANCE				
EF31	70 hours at 23°C (73.4°F)				
	Hardness Change, points	±5	-3	D471-06	
	Tensile Strength Change, percent	-25 (max.)	-15		
	Elongation Change, percent	-20 (max.)	+5		
	Volume Change, percent	0 to +10	+3.6		
	NO. 101 OIL				
EO78	70 hours at 200°C (392°F)				
	Hardness Change, points	-15 to +5	-13	D471-06	
	Tensile Strength Change, percent	-40 (max.)	-39		
	Elongation Change, percent	-20 (max.)	-16		
	Volume Change, percent	0 to +15	+14.6		
EO88	7700/SAE OIL				
	70 hours at 200°C (392°F)				
	Hardness Change, points	-15 to +5	-15	D471-06	
	Tensile Strength Change, percent	-40 (max.)	-38		
	Elongation Change, percent	-20 (max.)	-10		
	Volume Change, percent	+25 (max.)	+24.6		

^{*}American Society for Testing and Materials

